Get Answers to all your Questions

header-bg qa
Filter By

All Questions

If \frac{\mathrm{d} y}{\mathrm{d} x}=\frac{xy}{x^{2}+y^{2}};y(1)=1; then a value of x satisfying y(x)=e is :   
Option: 1 \sqrt{3}\: e
 
Option: 2 \frac{1}{2}\sqrt{3}\: e
 
Option: 3 \sqrt{2}\: e
 
Option: 4 \frac{e}{\sqrt{2}}
 
 

√3e

View Full Answer(4)
Posted by

Nalla mahalakshmi

If z be a complex number satisfying \left | Re\left ( z \right ) \right |+\left | Im(z) \right |=4, then \left | z \right | cannot be : 
Option: 1 \sqrt{7}
 
Option: 2 \sqrt{\frac{17}{2}}
 
Option: 3 \sqrt{10}
 
Option: 4 \sqrt{8}
 
 

Option d

 

View Full Answer(3)
Posted by

Shravani.D.K

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Let a,b\epsilon \textbf{R},a\neq 0 be such that the equation, ax^{2}-2bx+5=0 has a repeated root \alpha, which is also a root of the equation, x^{2}-2bx-10=0. If \beta is the other root of this equation, then \alpha ^{2}+\beta ^{2} is equal to:
Option: 1 24
Option: 2 25
Option: 3 26
Option: 4 28
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

ax2 – 2bx + 5 = 0 having equal roots or D=0 and \alpha=\frac{b}{a}

(2b)^2=4\times5\times a\;\;\Rightarrow \;\;b^2=5a

Put \alpha=\frac{b}{a} in the second equation

{x^{2}-2 b x-10=0} \\ {\Rightarrow b^{2}-2 a b^{2}-10 a^{2}=0}

\\\Rightarrow 5 a-10 a^{2}-10 a^{2}=0 \\ \Rightarrow 20 a^{2}=5 a \\ \Rightarrow a=\frac{1}{4} \text { and } \mathrm{b}^{2}=\frac{5}{4} \\ \alpha^{2}= 20 \text { and } \beta^{2}=5 \\ \alpha^{2}+\beta^{2} \\ =5+20 \\ =25

Correct Option 2

View Full Answer(1)
Posted by

avinash.dongre

The  number of real roots of the equation,  e^{4x}+e^{3x}-4e^{2x}+e^{x}+1=0  is :   
Option: 1 3
Option: 2 4
Option: 3 1
Option: 4 2
 

 

 

Transcendental function -

Transcendental functions:  the functions which are not algebraic are called transcendental functions. Exponential, logarithmic, trigonometric and inverse trigonometric functions are transcendental functions.

Exponential Function: function f(x) such that \mathrm{f(x)=a^x} is known as an exponential function.

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x\in \mathbb{R}}\\\mathrm{range:f(x)>0}

 

 

Logarithmic function:  function f(x) such that f\left ( x \right )= \log\: _{a}x is called logarithmic function 

\\\mathrm{base:\;\;a>0,a\neq1}\\\mathrm{domain:x>0}\\\mathrm{range:f(x)\in\mathbb{R}}
         

                    If a > 1                                                                               If a < 1

Properties of Logarithmic Function

\\\mathrm1.\;{\log_e(ab)=\log_ea+\log_eb}\\\mathrm{2.\;\log_e\left ( \frac{a}{b} \right )=\log_ea-\log_e b}\\\mathrm{3.\;\log_ea^m=m\log_ea}\\\mathrm{4.\;\log_aa=1}\\\mathrm{5.\;\log_{b^m}a=\frac{1}{m}\log_ba}\\\mathrm{6.\;\log_ba=\frac{1}{\log_ab}}\\\mathrm{7.\;\log_ba=\frac{\log_ma}{\log_mb}}\\\mathrm{8.\;a^{\log_am}=m}\\\mathrm{9.\;a^{\log_cb}=b^{\log_ca}}\\\mathrm{10.\;\log_ma=b\Rightarrow a=m^b}

-

 

 

 

Quadratic Equation -

The root of the quadratic equation is given by the formula:

 

\\\mathrm{x = \frac{-b \pm \sqrt{D}}{2a}}\\\\\mathrm{or} \\\mathrm{x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}}

 Where D is called the discriminant of the quadratic equation, given by D = b^2 - 4ac ,

 

-

 

Let e^{x}=t \in(0, \infty)

Now the equation 

\begin{array}{l}{t^{4}+t^{3}-4 t^{2}+t+1=0} \\ {t^{2}+t-4+\frac{1}{t}+\frac{1}{t^{2}}=0} \\ {\left(t^{2}+\frac{1}{t^{2}}\right)+\left(t+\frac{1}{t}\right)-4=0}\end{array}

Let \mathrm{t}+\frac{1}{\mathrm{t}}=\alpha

\begin{array}{l}{\left(\alpha^{2}-2\right)+\alpha-4=0} \\ {\alpha^{2}+\alpha-6=0} \\ {\alpha^{2}+\alpha-6=0}\end{array}

\alpha=-3,2

Only positive value possible so \alpha=2 \Rightarrow \quad \mathrm{e}^{x}+\mathrm{e}^{-\mathrm{x}}=2

x=0 is the only solution.

View Full Answer(1)
Posted by

avinash.dongre

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

The least positive value of 'a' for which the equation, 2x^{2}+(a-10)x+\frac{33}{2}=2a has real roots is
Option: 1 8
Option: 2 6
Option: 3 4
Option: 42
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

 

ii) If D > 0, then roots will be real and distinct. 

\\\mathrm{x_1 = \frac{-b + \sqrt{D}}{2a} } \;\mathrm{and \;\;x_2 = \frac{-b - \sqrt{D}}{2a} } \\\\\mathrm{Then,\;\; ax^2+bx +c =a(x-x_1)(x-x_2) }

 

iii) if roots D = 0, then roots will be real and equal, then


\\\mathrm{x_1=x_2 = \frac{-b}{2a} } \\\mathrm{Then, \;\; ax^2+bx +c =a(x-x_1)^2 }

-

{D \geqslant 0} \\\\ {(a-10)^{2}-8\left(\frac{33}{2}-2 a\right) \geq 0} \\\\ {a^{2}+100-20 a-132+16 a \geq 0}

\\ {a^{2}-4 a-32 \geqslant 0} \\\\ {a^{2}-8 a+4 a-32 \geq 0} \\\\ {(a+4)(a-8) \geq 0}

a \leq -4 \ \text{ or }\ a \geq \ 8

least positive value is 8.

View Full Answer(1)
Posted by

Kuldeep Maurya

If the equation, x^{2}+bx+45=0(b\epsilon R) has conjugate complex roots and they satisfy \left | z+1 \right |=2\sqrt{10}, then:
 
Option: 1 b^{2}+b=12
Option: 2 b^{2}-b=42
Option: 3 b^{2}-b=30
Option: 4 b^{2}+b=72
 

 

 

Nature of Roots -

Let the quadratic equation is ax2 + bx + c = 0

D is the discriminant of the equation.

 

i) if D < 0, then root are in the form of complex number, 

   If a,b,c ∈ R (real number) then roots will be conjugate of each other, means if p + iq is one of          

   the roots then other root will be p - iq

 

-

 

 

Let  z=\alpha\pm i\beta be roots of the equation

so 2 \alpha=-b \text { and } \alpha^{2}+\beta^{2}=45,(\alpha+1)^{2}+\beta^{2}=40

So, (\alpha+1)^{2}-\alpha^{2}=-5

\begin{array}{l}{\Rightarrow \quad 2 \alpha+1=-5 \quad \Rightarrow \quad 2 \alpha=-6} \\ {\text { so } \mathrm{b}=6}\end{array}\\Hence,\;\;b^2-b=30

Correct Option 3

View Full Answer(1)
Posted by

Kuldeep Maurya

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


Let y=y(x) be a solution of the differential equation, \sqrt{1-x^{2}}\frac{dy}{dx}+\sqrt{1-y^{2}}=0,\left | x \right |<1. If y\left ( \frac{1}{2} \right )=\frac{\sqrt{3}}{2}, then y\left ( \frac{-1}{\sqrt{2}} \right ) is equal to :
Option: 1 -\frac{1}{\sqrt{2}}
Option: 2 -\frac{\sqrt{3}}{2}
Option: 3 \frac{1}{\sqrt{2}}
Option: 4 \frac{\sqrt{3}}{2}
 

 

 

Formation of Differential Equation and Solutions of a Differential Equation -

This is the general solution of the differential equation (2), which represents the family of the parabola (when a = 1) and one member of the family of parabola is given in Eq (1).

Also, Eq (1) is a particular solution of the differential equation (2).

 

The solution of the differential equation is a relation between the variables of the equation not containing the derivatives, but satisfying the given differential equation.

 

A general solution of a differential equation is a relation between the variables (not involving the derivatives) which contains the same number of the arbitrary constants as the order of the differential equation. 

 

Particular solution of the differential equation obtained from the general solution by assigning particular values to the arbitrary constant in the general solution.

-

 

 

\sqrt{1-x^{2}} \frac{d y}{d x}=-\sqrt{1-y^{2}}

{\frac{d y}{\sqrt{1-y^{2}}}=-\frac{d x}{\sqrt{1-x^{2}}} \Rightarrow \sin ^{-1} y=-\sin ^{-1} x+c} \\ {x=\frac{1}{2}, y=\frac{\sqrt{3}}{2} \Rightarrow \frac{\pi}{2}=-\frac{\pi}{6}-c}

\begin{aligned} \sin ^{-1} y &=\frac{\pi}{2}-\sin ^{-1} x \\ &=\cos ^{-1} x \Rightarrow y=\sin (\cos^{-1}x) \end{aligned}

y\left ( \frac{1}{\sqrt{2}} \right ) =\frac{1}{\sqrt2}

Correct Option (3)

View Full Answer(1)
Posted by

Kuldeep Maurya

Let \alpha and \beta be two real roots of the equation (k+1)\tan ^{2}x-\sqrt{2}\cdot\lambda \tan x=(1-k), where, k(\neq-1 ) and \lambda are real numbers. If \tan^2 (\alpha +\beta )=50, then a value of \lambda is :
Option: 1 5\sqrt{2}  
Option: 2 10\sqrt{2}  
Option: 3 10  
Option: 4 5  
 

As we have learnt,

Sum of roots:

\\\mathrm{\alpha + \beta =\frac{-b}{a}}

Product of roots:

 \alpha \cdot \beta = \frac{c}{a}

Trigonometric Ratio for Compound Angles (Part 2)


\\\mathrm{\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}}\\\\\mathrm{\tan (\alpha-\beta)=\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}}

 

 

Now,

\\\tan \alpha + \tan{\beta } = \frac{\sqrt{2} \lambda}{1+k}\\\\\tan \alpha \times \tan{\beta } = \frac{k-1}{1+k} 

Since \tan \alpha \& \tan \beta are the roots of the given equation

\tan(\alpha + \beta) = \frac{\tan \alpha + \tan{\beta }}{1-\tan{\alpha }\tan{\beta }} = \frac{\frac{\sqrt{2}\lambda }{1+k}}{1- \frac{k-1}{k+1}} =\frac{\lambda}{\sqrt2}

Now,

\\ {\tan ^{2}(\alpha+\beta)=\frac{\lambda^{2}}{2}=50} \\ {\lambda=10}

 

View Full Answer(1)
Posted by

Kuldeep Maurya

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

Let \alpha be a root of the equation x^{2}+x+1=0 and the matrix A=\frac{1}{\sqrt{3}}\begin{bmatrix} 1 & 1 & 1\\ 1 & \alpha & \alpha ^{2}\\ 1 & \alpha ^{2}& \alpha ^{4} \end{bmatrix}, Then the matrix A^{31} is equal to :
Option: 1 A
Option: 2A^{2}
Option: 3 A^{3}
Option: 4 I_{3}
 

 

 

Cube roots of unity -

z is a complex number

Let z3 = 1  

⇒ z3 - 1 = 0

⇒ (z - 1)(z2 + z + 1) = 0

⇒ z - 1 = 0  or z2 + z + 1 = 0

 

\\\mathrm{\therefore \;z=1\;\;or\;\;z=\frac{-1\pm\sqrt{(1-4)}}{2}=\frac{-1\pm i\sqrt{3}}{2}} \\\mathrm{Therefore, \;\mathbf{z=1},\;\mathbf{z=\frac{-1+ i\sqrt{3}}{2}}\;\;and\;\;\mathbf{z=\frac{-1- i\sqrt{3}}{2}}}

 

If the second root is represented by ?, then the third root will be represented by ?2.

 

 

\\\mathrm{\mathbf{\omega=\frac{-1+ i\sqrt{3}}{2}},\;\;\omega^2=\mathbf{\frac{-1- i\sqrt{3}}{2}}}

 

Properties of cube roots:

i) 1 + ? + ?2 = 0 and ?3 = 1

ii) to find ?n , first we write ? in multiple of 3 with remainder belonging to 0,1,2 like n=3q + r

Where r is from 0,1,2. Now ?n = ?3q + r = (?3)q·?r  = ?r.

-

 

 

 

 

Multiplication of two matrices -

Matrix multiplication: 

Two matrices  A and B are conformable for the product AB if the number of columns in A and the number of rows in B is equal. Otherwise, these two matrices will be non-conformable for matrix multiplication. So on that basis,

i) AB is defined only if col(A) = row(B)

ii) BA is defined only if col(B) = row(A)

If 

    \\\mathrm{A = \left [ a_{ij} \right ]_{m\times n}} \\\mathrm{\\B=\left [ b_{ij} \right ]_{n\times p}}

    \\\mathrm{C = AB = \left [ c_{ij} \right ]_{m\times p}} \\\mathrm{Where\;\; c_{ij} = \sum_{j=1}^{n}a_{ij}b_{jk}, 1\leq i\leq m,1\leq k\leq p} \\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;=a_{i1}b_{1k} + a_{i2}b_{2k} + a_{i3}b_{3k}+ ... + a_{in}b_{nk}}

For examples

\\\mathrm{Suppose,\;two\;matrices\;are\;given}\\\mathrm{A=\begin{bmatrix} a_{11} &a_{12} &a_{13} \\ a_{21} &a_{22} & a_{33} \end{bmatrix}_{2\times3}\;\;\;and\;\;\;B=\begin{bmatrix} b_{11}& b_{12} &b_{13} \\b_{21} &b_{22} &b_{23} \\b_{31} &b_{32} &b_{33} \end{bmatrix}_{3\times3}}\\\\\mathrm{To\:obtain\:the\:entries\:in\:row\:\mathit{i}\:of\:AB,\:we\:multiply\:the\:entries\:in\:row\:\mathit{i}\:of\:A\:by\:}\\\mathrm{column\:\mathit{j}\:in\:B\:and\:add.}\\\mathrm{given\:matrices\:A\:and\:B,\:where\:the\:order\:of\:A\:are\:2\times3\:and\:the\:order\:of\:B\:are\:3\times3,}\\\mathrm{the\:product\:of\:AB\:will\:be\:a\:2\times3\:matrix.}\\\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:1\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:first\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{11}\\b_{21} \\b_{31} \end{bmatrix}=a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31}}

\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:2\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:second\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{12}\\b_{22} \\b_{32} \end{bmatrix}=a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32}}\\\\\mathrm{To\:obtain\:the\:entry\:in\:row\:1,\:column\:3\:of\:AB,\:multiply\:the\:}\\\mathrm{first\:row\:in\:A\:by\:the\:thired\:column\:in\:B,and\:add.}\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\begin{bmatrix} a_{11} &a_{12} &a_{13} \end{bmatrix}\begin{bmatrix} b_{13}\\b_{23} \\b_{33} \end{bmatrix}=a_{11}\cdot b_{13}+a_{12}\cdot b_{23}+a_{13}\cdot b_{33}}\\\\\mathrm{We\:proceed\:the\:same\:way\:to\:obtain\:the\:second\:row\:of\:AB.\:In\:other\:words,\:}\\\mathrm{row\:2\:of\:A\:times\:column\:1\:of\:B;}\\\mathrm{row\:2\:of\:A\:times\:column\:2\:of\:B;}\\\mathrm{row\:2\:of\:A\;times\:column\:3\:of\:B.}

\\\mathrm{When\:complete,\:the\:product\:matrix\:will\:be}\\\\\mathrm{AB=\begin{bmatrix} a_{11}\cdot b_{11}+a_{12}\cdot b_{21}+a_{13}\cdot b_{31}\;\;& a_{11}\cdot b_{12}+a_{12}\cdot b_{22}+a_{13}\cdot b_{32}\;\; &a_{11}\cdot b_{13}+a_{12}\cdot b_{23}+a_{13}\cdot b_{33} \\ a_{21}\cdot b_{11}+a_{22}\cdot b_{21}+a_{23}\cdot b_{31} \;\;& a_{21}\cdot b_{12}+a_{22}\cdot b_{22}+a_{23}\cdot b_{32} \;\;& a_{21}\cdot b_{13}+a_{22}\cdot b_{23}+a_{23}\cdot b_{33} \end{bmatrix}}

 

-

 

 

Given

\\x^2+x+1=0\\\Rightarrow \alpha\;is\;the\;root\;of\;the\;eq\\\alpha=\omega,\;\;\omega^2\\\text{A}=\frac{1}{\sqrt3}\begin{bmatrix} 1 &1 &1 \\ 1& \omega &\omega^2 \\ 1 &\omega^2 &\omega \end{bmatrix}\\\text{A}^2=\frac{1}{3}\begin{bmatrix} 3 &0 &0 \\ 0& 0 &3 \\ 0 &3 &0 \end{bmatrix}

\\\text{A}^4=\frac{1}{3}\begin{bmatrix} 3 &0 &0 \\ 0& 0 &3 \\ 0 &3 &0 \end{bmatrix}\times \frac{1}{3}\begin{bmatrix} 3 &0 &0 \\ 0& 0 &3 \\ 0 &3 &0 \end{bmatrix}\\\text{A}^4=I\\\therefore A^{31}=A^{28}\cdot A^3=A^3

Correct option (3)

View Full Answer(1)
Posted by

Ritika Jonwal

If Re \left [ \frac{z-1}{2z+i} \right ]=1, where z=x+iy, then the point (x,y) lies on a :


Option: 1 circle whose centre is at \left [ -\frac{1}{2},-\frac{3}{2} \right ].

Option: 2 straight line whose slope is \frac{3}{2}.

Option: 3 circle whose diameter is \frac{\sqrt{5}}{2}.

Option: 4 straight line whose slope is -\frac{2}{3}.
 

 

 

Conjugate of complex numbers and their properties -

The complex conjugate of a complex number a + ib (a, b are real numbers and b ≠ 0) is a − ib. 

It is denoted as  \bar{z}.

i.e. if z = a + ib, then its conjugate is  \bar{z}  = a - ib.

Conjugate of complex numbers is obtained by changing the sign of the imaginary part of the complex number. The real part of the number is left unchanged.


Note: 

  • When a complex number is added to its complex conjugate, the result is a real number. i.e. z = a + ib, \bar{z}  = a - ib

Then the sum, z + \bar{z}= a + ib + a - ib = 2a (which is real)

  • When a complex number is multiplied by its complex conjugate, the result is a real number i.e. z = a + ib, \bar{z} = a - ib

Then the product, z?\bar{z} = (a + ib)?(a - ib) = a2 - (ib)2

                                                  = a2 +  b2 (which is real)

-

Circle(Definition) -
 

General Form:

The equation of a circle with centre at (h,k) and radius r is 

\\ {\Rightarrow(x-h)^{2}+(y-k)^{2}=r^{2}} \\ {\Rightarrow x^{2}+y^{2}-2 h x-2 k y+h^{2}+k^{2}-r^{2}=0\;\;\;\;\;\;\;\;\;\;\;\ldots(i)} \\ {\text { Which is of the form : }} \\ {\mathbf{x}^{2}+\mathbf{y}^{2}+2 \mathbf{g} \mathbf{x}+2 \mathbf{f} \mathbf{y}+\mathbf{c}=\mathbf{0}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\ldots(ii)}

This is known as the general equation of the circle.

Compare eq (i) and eq (ii)

h = -g, k = -h   and c=h2+k2-r2

Coordinates of the centre  (-g,-f)

Radius =g2+f2-c  

-

\\Re\left ( \frac{z-1}{2z+i} \right )=1

\\\text{put}\;z=x+iy

\operatorname{Re}\left(\frac{(x+i y)-1}{2(x+i y)+i}\right)=1

\operatorname{Re}\left(\left(\frac{(x-1)+i y}{2 x+i(2 y+1)}\right)\left(\frac{2 x-i(2 y+1}{2 x-i(2 y+1)}\right)\right)=1

\Rightarrow 2 x^{2}+2 y^{2}+2 x+3 y+1=0

x^{2}+y^{2}+x+\frac{3}{2} y+\frac{1}{2}=0

\Rightarrow $ locus is a circle whose

\text {Centre is }\left(-\frac{1}{2},-\frac{3}{4}\right)\text { and radius } \frac{\sqrt{5}}{4}.

\Rightarrow \text { diameter }=\frac{\sqrt{5}}{2}

Correct Option (3)

View Full Answer(1)
Posted by

Ritika Jonwal

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img