Get Answers to all your Questions

header-bg qa
Filter By

All Questions

The barrel of a fountain pen, cylindrical in shape, is 7 cm long and 5 mm in diameter. A full barrel of ink in the pen is used upon writing 3300 words on average. How many words can be written in a bottle of ink containing one-fifth of a litre?

\\\text{Volume of the barrel}=\pi r^2h=\frac{22}{7}\times(0.25)^2\times7\\=1.375cm^3=\frac{1.375}{1000}L

3300 words can be written with 0.001375 L of ink

So with 1L of ink 3300/0.001375 words can be written=2400000

So with 1/5th of a litter 2400000/5 words can be written=48000

View Full Answer(2)
Posted by

rishi.raj

A pen stand made of wood is in the shape of a cuboid with four conical depressions and a cubical depression to hold the pens and pins, respectively. The dimension of the cuboid are 10 cm, 5 cm and 4 cm. The radius of each of the conical depressions is 0.5 cm and the depth is 2.1 cm. The edge of the cubical depression is 3 cm. Find the volume of the wood in the entire stand.

Radius of conical depression = 0.5 cm

            Depth = 2.1 cm

            Volume=\frac{1}{3}\pi r^2 h

                        =\frac{1}{3}\times \frac{22}{7} \times (0.5)^2 \times 2.1

                        =0.55cm^3

            \thereforethe volume of 4 cones =4 \times 0.55=2.2cm^3

            Edge of cube = 3

            The volume of cube     =33    (  Because the volume of cube = a3 )        

            Length of cuboid = 10 cm

            Breadth = 5 cm

            Height = 4 cm

        Volume =l \times b \times h

                        =10 \times 5 \times 4=200 cm^3

            Volume of wood = volume of cuboid – volume of cube - volume of 4 cones

            =200 - 2.2 -27 = 170.8 cm3

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

The rain water from a roof of dimensions 22 m × 20 m drains into a cylindrical vessel having diameter of base 2 m and height 3.5 m. If the rain water collected from the roof just fill the cylindrical vessel, then find the rainfall in cm.

The radius of the cylindrical vessel

=\frac{2}{2}=1cm

            Height = 3.5 cm

           \text{ Volume} =\pi r^2 h=\frac{22}{7}\times 1 \times 1 \times \frac{35}{10}=11m^3

            Let the height of rainfall = x

            Length = 22m

            Breadth = 20m

           Volume= l \times b \times h

                        = 22 \times 20 \times x

            Rainfall = volume of water = volume of the cylindrical vessel

                        22 \times 20 \times x=11

                        x=\frac{11}{22 \times 20}=\frac{1}{40}=0.025 m

                        x=0.025 m

            Or        x= 2.5cm        [Q 1 m = 100 cm]

            Hence the rainfall is in 2.5 cm

View Full Answer(1)
Posted by

infoexpert21

Water flows through a cylindrical pipe, whose inner radius is 1 cm, at the rate of 80 cm/sec in an empty cylindrical tank, the radius of whose base is 40 cm. What is the rise of water level in tank in half an hour?

Radius of cylindrical pipe = 1 cm

            Height = 80 cm

   Volume=\pi r ^2 h

                        =\frac{22}{7} \times 1 \times 1 \times 80 = 251.4285 cm^3 /sec

In half an hour volume of water is

            =251.4285 \times30 \times60 = 452571.5 cm^3

            Radius of cylindrical tank = 40 cm

            Let height = h

            Volume =\pi r ^2 h

                        \frac{22}{7}\times (40)^2 h= 5828.5714 cm^3

            According to question

            The volume of cylindrical pipe = volume of the cylindrical tank

                     = 452571.5 = 5028.5714h

                        \frac{452571.5}{5028.5714} = h

                        h =89.99

                        h = 90 cm (approximate)

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

A solid right circular cone of height 120 cm and radius 60 cm is placed in a right circular cylinder full of water of height 180 cm such that it touches the bottom. Find the volume of water left in the cylinder, if the radius of the cylinder is equal to the radius of the cone.

Height of cone = 120cm

            Radius =60cm

           Volume =\frac{1}{3}\pi r^2 h

                        =\frac{1}{3}\pi( 60)^2 120

                        =452571.43cm^3

            Height of cylinder = 180

            Radius = 60 cm           (given that radius of the cylinder is equal to the radius of the cone)

Volume=\pi r^2 h

=pi( 60)^2 180=2036571.43cm^3

            Volume of water left in the cylinder = volume of cylinder – volume of cone

                        2036571.43 – 452571.43

                        = 1584000 cm3

            Or        1.584 m3          [Q 1m = 100cm]

                        2m3 (approximate)     

View Full Answer(1)
Posted by

infoexpert21

A hemispherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped bottles each of radius 1.5 cm and height 4 cm. How many bottles are needed to empty the bowl?

The radius of hemispherical bowl = 9 cm

 Volume =\frac{2}{3}\pi r^3 =\frac{2}{3} \times \frac{22}{7}\times 9\times 9\times 9

  Radius of cylindrical bottle = 1.5 cm

  Height = 4cm

 Volume=\pi r^2h

 =\frac{22}{7}\times \frac{15}{10}\times \frac{15}{10}\times 4

   \text{ Number of bottles needed}=\frac{\text {volume of hemispherical bowl}}{\text {volume of cylindrical bottle}}

                        =\frac{2}{3} \times \frac{22}{7}\times 9\times 9\times 9

                       _________________

                        =\frac{22}{7}\times \frac{15}{10}\times \frac{15}{10}\times 4

                        =\frac{2 \times 9 \times 9 \times \times 10 \times 10}{3 \times 15 \times 15 \times 4} =54 bottles  

View Full Answer(1)
Posted by

infoexpert21

NEET 2024 Most scoring concepts

    Just Study 32% of the NEET syllabus and Score up to 100% marks


A building is in the form of a cylinder surmounted by a hemispherical vaulted dome and contains 41\frac{19}{21}m^3 of air. If the internal diameter of dome is equal to its total height above the floor, find the height of the building?

Give: Volume of building

41\frac{19}{21}=\frac{880}{21}

            Let total height above the floor = h

            Hemisphere‘s diameter = h (given)

          Radius =\frac{h}{2}

          Volume=\frac{2}{3}\pi r^3=\frac{2}{3}\pi \left ( \frac{h}{2} \right )^3

            Height of cylinder = total height – the height of hemisphere

            h-\frac{h}{2}=\frac{h}{2}

            Volume \pi r^2 h=\pi \times \left (\frac{h}{2} \right )^2 \times \frac{h}{2} =\pi \left (\frac{h}{2} \right )^3

            According to question

            The volume of building = Volume of cylinder + volume of the hemisphere

                        \frac{880}{21}=\left ( \frac{h}{2} \right )^3\left [ \pi + \frac{2}{3} \pi \right ]

                        \frac{880}{21}=\left ( \frac{h}{2} \right )^3\left [ \frac{3\pi +2\pi }{3} \right ]

                        \frac{880 \times 2^3}{21}=h^3 \left [ \frac{5\pi }{3} \right ]

                        \frac{880 \times 2\times 2\times 2\times 7\times 3}{21\times 5\times 22}=h^3

                        h^3 = {2 \times 2 \times 2\times 2\times 2\times 2

                        h = \sqrt[3]{2 \times 2 \times 2\times 2\times 2\times 2}

                        h = 2 \times 2

                        h=4m

View Full Answer(1)
Posted by

infoexpert21

A rocket is in the form of a right circular cylinder closed at the lower end and surmounted by a cone with the same radius as that of the cylinder. The diameter and height of the cylinder are 6 cm and 12 cm, respectively. If the slant height of the conical portion is 5 cm, find the total surface area and volume of the rocket 

[Use \pi = 3.14].

Diameter of cylinder = 6 cm

            Radius = 3 cm

            Height = 12 cm

            \text{ Surface are} =2 \pi r h = 2\pi \times 3 \times 12 = 72 \pi cm^2

            Similarly radius of circle = 3 cm

          \text{ Area} =\pi r^2=\pi 3 \times 3 = 9 \pi cm^2

            Slant height of cone (l)=5cm

            Radius = 3 cm

\text{ Surface area}=\pi r l =\pi \times 5 \times 3 = 15\pi cm^2

            Total surface area = area of cylinder + area of circle + area of the cone

                        =72\pi + 9 \pi + 15 \pi

                        =96\pi

                        =96\times 3.14=301.7 cm^2

            Slant height (l) = 5cm

            We know that,

h^2+r^2=l^2

 h^2+3^2=5^2

 \\h^2= 25 -9 \\ h^2=16 \\\ h = 4                 

\text{ Volume of cylinder= }\pi r^2 h \\ = \pi \times 3 \times 3 \times 12 = 108 \pi cm^3                  

 \\\text{ Volume of cone}=\frac{1}{3}\pi r^2 h \\ = \frac {1}{3} \pi \times 3 \times 3 \times 12 = 12 \pi cm^3                                 

\text{ Volume of rocket }=180 \pi + 12 \pi

                        =120 \pi

                        =120 \times 3.14 =377.14 cm^3

View Full Answer(1)
Posted by

infoexpert21

Crack CUET with india's "Best Teachers"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
cuet_ads

A milk container of height 16 cm is made of metal sheet in the form of a frustum of a cone with radii of its lower and upper ends as 8 cm and 20 cm respectively. Find the cost of milk at the rate of Rs. 22 per litre which the container can hold.

Answer 230.10 Rs.

Solution

            Upper radius of frustum of cone (R) = 20cm

            Lower radius of frustum of cone r = 8cm

            Height (h)= 16cm

            Volume \frac{\pi h}{3}[R^2+r^2+Rr]

                        \frac{22 \times 16}{7 \times 3}(20^2+8^2+20 \times 8)

                        \frac{22 \times 16}{21}(400 + 64+160)

                        

                        \frac{22 \times 16}{21}(624)

                        \frac{22 \times 16\times 208}{7}=10459.428 m^3

                                                  = 10.459 liter

            Cost of 1 liter milk = 22 Rs.

            Cost of 10.459 liter milk 22 \times 10.459

                     =   2301.10 Rs

View Full Answer(1)
Posted by

infoexpert21

500 persons are taking a dip into a cuboidal pond which is 80 m long and 50 m broad. What is the rise of water level in the pond, if the average displacement of the water by a person is 0.04m3?

Length of cuboidal pond = 80m

            Breadth = 50 m

             Let, Height = h

           \text{ Volume}\ l \times b \times h

                        80 \times 50 \times h=400 h m^3

            Average water of one person =0.04m3

            Average water of 500 persons = 0.04 \times 500

            According to question

            The volume of cuboidal pond = Average water of 500 persons

                        400 h =0.04 \times 500

                        h = 4 \times \frac{500 }{100\times 400}=\frac{5}{100}=0.05m

View Full Answer(1)
Posted by

infoexpert21

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

filter_img